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Abstract 
Conventional color reproduction technology is based 

on the paradigm that three variables are sufficient to 

characterize a color. Color television uses three color 

channels, and silver-halide color photography uses 

three photo-sensitive layers. However, in particular 

due to metamerism, three color channels are often 

insufficient for high quality imaging e.g. for museum 

applications. In recent years, a significant amount of 

color imaging research has been devoted to 

introducing imaging technologies with more than 

three channels – a research field known as 

multispectral color imaging. This paper gives a brief 

overview of this field and presents some recent 

advances concerning acquisition and reproduction of 

multispectral images. 

 

Introduction 
Already in 1853, the mathematician Hermann 

Grassmann, the inventor of linear algebra, postulated 

that three variables are necessary and sufficient to 

characterize a color [1]. This principle, the 

three-dimensionality of color, has since been 

confirmed by thorough biological studies of the 

human eye. This is the reason why analog and digital 

color images are mostly composed of three color 

channels, such as red, green and blue (RGB). 

 

However, for digital image acquisition and 

reproduction, three-channel images have several 

limitations. First, in a color image acquisition process, 

the scene of interest is imaged using a given 

illuminant. Due to metamerism, the color image of 

this scene under another illuminant cannot be 

accurately estimated. Furthermore, since the spectral 

sensitivities of the acquisition device generally differ 

from the standardized color matching functions, it is 

also impossible to obtain precise device-independent 

color. By augmenting the number of channels in the 

image acquisition and reproduction devices we can 

remedy these problems, and thus increase the color 

image quality significantly. 

 

Multispectral color imaging systems are developing 

rapidly because of their strong potential in many 

domains of application, such as physics, museum, 

cosmetics, medicine, high-accuracy color printing, 

computer graphics, etc. Several academic research 

groups worldwide have been working on these matters, 

for example at the University of Chiba in Japan [2,3], 

Rochester Institute of Technology in the United States 

[4-8], RWTH Aachen in Germany [9,10], University 

of Joensuu in Finland [11,12], ENST Paris in France 

[13-17], University of Burgundy in France [18-20], 

and Gjøvik University College in Norway [21-29]. 

 

Multispectral image acquisition 
A multispectral image acquisition system typically 

contains essentially the same elements as a color 

image acquisition device, the only principal difference 

is that it has more than three channels. A typical 

multispectral camera is built from a monochrome 

camera coupled with a set of K color filters mounted 

on a rotating filter wheel [3,4,16,18,19] or by using an 

electronically tunable filter [5,17].  

 

By sampling the spectra and applying matrix notation, 

we can express the K-channel camera response as the 

vector  

 

cK = STr,  (1) 

 

where S is the known N-line, K-column matrix of the 

spectral transmittances of the filters multiplied by the 

camera sensitivities, the optical path transmittance, 

and the spectral distribution of the illuminant.  
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Equation (1) represents a basic linear model of the 

image acquisition system, and this model can typically 

be used for further interpretation of the multispectral 

image data. 

 

Spectral reconstruction 
The problem of estimating the spectral reflectances r’ 

from the camera responses cK  is central in the design 

and optimization of a multispectral color imaging 

system. 

 

One approach is to take advantage of a priori 

knowledge concerning the spectral reflectances that 

are to be imaged, by assuming that the reflectance r in 

each pixel is a linear combination of a known set of P 

smooth reflectance functions: r = Ra, with R = [r1 

r2 … rP] the matrix of the P known reflectances and a 

= [a1 a2 … aP]T  a vector of coefficients. 

 

We have previously proposed [14] a reconstruction 

operator that minimizes the Euclidian distance dE(r, r’) 

between the original spectrum r and the reconstructed 

spectrum r’: 

 

r’ = RRTS(STRRTS)-1cK (2) 

 

In [29] we compared the performance of a number of 

linear methods for reflectance reconstruction 

including the one presented above. Methods based 

upon smoothness minimization, linear models of 

reflectance and least squares fitting were compared 

using two simulated 6-channel camera systems. The 

smoothness methods were generally found to deliver 

the best performance on the test data sets. 

Furthermore, they deliver equivalent performance on 

training data, even compared to those methods that 

make explicit use of a priori knowledge of the training 

data. 

 

Spectral reconstruction continues to be an active field 

of research. One trend is to apply non-linear methods 

such as polynomial regression [23] (see Figure 1). 

Neural network-based methods have been found to 

yield superior performance in the presence of 

acquisition noise [15,19]. Recently Alsam and Connah 

[25] proposed to use convex bases as an alternative to 

linear bases and a method for spectral reconstruction 

using metamer sets, with promising results, and 

Mansouri et al [20] proposes to use wavelets as basis 

functions. 

 

Figure 1. Mean RMS spectral reconstruction error for an 
evaluation data set of over 1000 natural reflectances [], plotted 
as function of the number of sensors for an optimised 
regularised polynomial transform (circles and dashed lines) and 
a linear, or 1st order polynomial, method (triangles and solid 
lines) [23]  

 

How many channels? 
The surface reflectance functions of natural and 

manmade surfaces are invariably smooth. It is 

desirable to exploit this smoothness in a multispectral 

imaging system by using as few sensors as possible to 

capture and reconstruct the data. In a recent paper [24] 

we investigated the minimum number of sensors to 

use, while also minimizing the spectral reconstruction 

error. 

 

We do this by deriving different numbers of optimized 

sensors, constructed by transforming the characteristic 

vectors of the data (Figure 2), and simulating 

reflectance reconstruction with these sensors in the 

presence of noise. We find an upper limit to the 

number of optimized sensors one should use, above 

which the noise prevents decreases in error. For a set 

of Munsell reflectances, captured under educated 

levels of noise, we find that this limit occurs at 

approximately nine sensors, see Figure 3. We also 

demonstrate that this level is both noise and dataset 

dependent, by providing results for different 

magnitudes of noise and different reflectance datasets. 
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Figure 2. Non-negative sensors formed by varimax rotation with 
added positivity constraint. [24]  

 

Figure 3. Effect of increasing sensor number with 12 bit 

quantization and 1% shot noise on Munsell reflectance data 

[24]. 

 

Spectral color reproduction 
Even though Professor Hunt pinned down the concept 

of spectral color reproduction some time back [31], 

the idea of creating a reflective physical image, in 

which the spectral reflectance of the original scene is 

reproduced, have not been much explored since. 

Besides a few early photographic techniques, it is only 

recently that this idea has been taken up in color 

imaging research [6-9,21,22,26,27].  

 

The main idea behind our research in this area is that 

it is possible to reproduce multispectral color images 

faithfully on printed media, using a multi-channel 

image reproduction system. Our goal is thus to 

reproduce images with a spectral match to an original 

scene, or a reference image, in order to eliminate the 

problems of the conventional metameric matches that 

can be achieved with four-color printing processes. A 

metameric match is only correct under a given 

viewing illuminant, while a spectral match is correct 

under any illuminant. 

 

Although conceptually simple, the realization of a 

multispectral color image reproduction system 

requires many challenging research problems to be 

solved, some of which are briefly presented in the 

following sections. 

 

Spectral printer characterization 
In order to use a printer for spectral reproduction it is 

crucial to model its behaviour precisely. A landmark 

printer model for halftone prints is the Neugebauer 

model [32], in which the estimated spectral 

reflectance Rest(λ) of a colorant combination is a 

weighted sum of the spectral reflectances Pi(λ) of the 

Neugebauer primaries (NP), 

 
 (3) 

 

The NPs are all the possible combinations of colorants 

that the printer can print. For example a three ink 

printer (CMY) will produce 23 = 8 NPs. Currently, the 

Yule-Nielsen modified spectral Neugebauer (YNSN) 

model [33], in which the so-called n-factor is 

introduced in an attempt to model the light interaction 

between the paper and the colorants, is popular [6]:  

  

 (4) 

 

For both models, the weights wi  are calculated from 

the colorant values c1, c2, and c3 (in the case of a 

three-primary printer) using the Demichel model, as 

follows: 

with the relation: 

    (6)

w0  =  (1-c1)(1-c2)(1-c3), 
w1  =  c1 (1-c2)(1-c3), 
w2  =  (1-c1) c2 (1-c3), 
w3  =  (1-c1)(1-c2) c3,              (5) 
w12  =  c1 c2 (1-c3), 
w13  =  c1(1-c2) c3, 

w23  =  (1-c1) c2 c3, 
w123  =  c1 c2 c3, 
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The Neugebauer model requires the measurements of 

the NPs to evaluate the reflectance of any colorant 

combination. The value of the n-factor depends on the 

printing technology: for instance for amplitude 

modulated halftoning a value around 2 is typically 

used, while for frequency modulated halftoning, it is 

used as an optimization factor. 

 

We have obtained promising results for an 

eight-channel inkjet system using the YNSN model 

[21]. An important problem that was discovered is that 

the model fails when the paper receives too much ink. 

 

Spectral colorant separation 
By the spectral characterization process, a relationship 

between colorant values and resulting spectral 

reflectance is established: this is denoted the forward 

printer model. 

 

However, in practice for spectral reproduction it is the 

inverse relationship that is needed; the inverse model 

converts from the desired spectral reflectance to 

required colorant values. Since the YNSN model is 

not analytically invertible, iterative methods are often 

used. It is also possible to use large size look-up tables 

but they require a large number of data to be built. 

The iterative methods have the advantage to require 

just a few measurements, but the iteration process can 

fall into local minima, and therefore fail to obtain the 

optimal solution. To alleviate this problem we recently 

proposed an alternative method of inverting the 

Neugebauer model [34]. 

 

An optimization method will look for the best colorant 

combination such that each iteration of the inversion 

process provides a closer estimation of the desired 

spectral target. Typically these techniques try to 

minimize a spectral difference between a spectral 

target and its estimation. 

 

We currently explore the difference between a 

colorimetric and spectral reproduction based on the 

same set of NPs. 

 

Spectral halftoning 
Once a set of colorant values for each pixel is 

obtained, commonly it is necessary to apply a 

halftoning process to convert the pixel values 

typically ranging from 0 to 255 on eight bits to binary 

levels indicating whether an ink drop of a certain 

color is laid down at a certain location or not. 

 

This halftoning is typically done by error diffusion 

(ED) performed separately on each channel. In ED the 

output pixel value (0 or 1) of an ink channel is 

determined by a thresholding condition. Then the 

difference (i.e. the error) between the input pixel value 

and output pixel value is weighted by a weight filter 

and diffused to the neighboring pixels. This operation 

is performed for each colorant channel separately in a 

raster scan mode. Clustered-dot screens are not 

suitable because of moiré issues when using a high 

number of primaries. It has been observed that the fact 

that the ED is performed independently for each 

channel introduces unwanted objectional patterns, this 

can be called stochastic moiré [35]. 

 

In a recent paper we have proposed to use Vector 

Error Diffusion (VED) for spectral reproduction [27]. 

The VED technique halftones a picture considering 

each pixel value of an image as a vector of data, thus 

performing the halftoning of all the channels 

simultaneously. For colorimetric VED, the error 

metric determining the combination of inks to be 

printed is typically calculated as the Euclidean 

distance in colour space between the desired colour 

and the colours of the Neugebauer Primaries [35]. The 

NP giving the smallest error is chosen, and the 

resulting error is diffused to the neighboring pixels. 

 

The extension from colorimetric VED to spectral 

VED is relatively straightforward; the error metric is 

the Euclidean distance in spectral reflectance space. 

Using this approach we have obtained very promising 

simulation results on a 7-channel inkjet printer.  For 

each pixel the spectral reflectance is directly 

converted into a dot distribution and is ready to be 

printed. We thus completely avoid the difficult 

problem of establishing the inverse model, as 

discussed earlier. As it can be seen in Figure 4, the 
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effect of stochastic moiré is greatly reduced. 

 

However, spectral VED is a time consuming process, 

and further work should be done to increase the 

performance of the algorithm. 

 

Spectral gamut mapping 
So far we have presented two possibilities to 

reproduce spectral images: one is following the steps 

of spectral printer characterization, spectral colorant 

separation and halftoning of each colorant channel by 

ED, the second is a direct halftoning by spectral VED. 

Both ways suffer when data (or part of them at least) 

to be reproduced are located outside the spectral 

printer gamut. The dimensionality of the spectral data 

makes it difficult to apply directly extensions of color 

gamut mapping algorithms. We proposed an 

alternative approach based on reducing the 

dimensionality of the problem [22] allowing to map 

data outside the gamut toward its surface.  

 

Also a full spectral gamut mapping have been 

introduced based in the inverse spectral printer model. 

In an inversion problem we are looking for the best 

colorant combination to reproduce a spectral 

reflectance. But the spectral reflectance of a colorant 

combination is the weighted summation of the 

Neugebauer primaries. So inverting the spectral 

Neugebauer equations for the weights of the NPs give 

the closest spectral match for a set of NPs. This 

technique have shown good results when applied 

before performing spectral VED, the resulting 

halftoned image presenting a strong reduction of noise 

visibility. 

 

Conclusion 
In this paper we have given a brief overview of the 

field of multispectral color imaging, as well as a few 

of our recent advances in the field. In particular we 

have discussed topics such as spectral reconstruction 

for acquisition of multispectral color images, spectral 

printer characterization and halftoning considerations 

for spectral color reproduction. Much has happened in 

this field over the last decade, but there is still work to 

be done in order for multispectral color imaging and 

spectral color reproduction to make it into the 

mainstream of imaging. 
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